Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Using program synthesis to select instructions for and optimize input programs is receiving increasing attention. However, existing synthesis-based compilers are faced by two major challenges that prohibit the deployment of program synthesis in production compilers: exorbitantly long synthesis times spanning several minutes and hours; and scalability issues that prevent synthesis of complex modern compute and data swizzle instructions, which have been found to maximize performance of modern tensor and stencil workloads. This paper proposes MISAAL, a synthesis-based compiler that employs a novel strategy to use formal semantics of hardware instructions to automatically prune a large search space of rewrite rules for modern complex instructions in an offline stage. MISAAL also proposes a novel methodology to make term-rewriting process in the online stage (at compile-time) extremely lightweight so as to enable programs to compile in seconds. Our results show that MISAAL reduces compilation times by up to a geomean of 16x compared to the state-of-the-art synthesis-based compiler, HYDRIDE. MISAAL also delivers competitive runtime performance against the production compiler for image processing and deep learning workloads, Halide, as well as HYDRIDE across x86, Hexagon and ARM.more » « lessFree, publicly-accessible full text available June 10, 2026
-
As far as plastron is sustained, superhydrophobic (SHPo) surfaces are expected to reduce skin-friction drag in any flow conditions including large-scale turbulent boundary-layer flows of marine vessels. However, despite many successful drag reductions reported using laboratory facilities, the plastron on SHPo surfaces was persistently lost in high-Reynolds-number flows on open water, and no reduction has been reported until a recent study using certain microtrench SHPo surfaces underneath a boat (Xu et al., Phys. Rev. Appl. , vol. 13, no. 3, 2020, 034056). Since scientific studies with controlled flows are difficult with a boat on ocean water, in this paper we test similar SHPo surfaces in a high-speed towing tank, which provides well-controlled open-water flows, by developing a novel $$0.7\ \textrm {m} \times 1.4\ \textrm {m}$$ towing plate, which subjects a $$4\ \textrm {cm} \times 7\ \textrm {cm}$$ sample to the high-Reynolds-number flows of the plate. In addition to the 7 cm long microtrenches, trenches divided into two in length are also tested and reveal an improvement. The skin-friction drag ratio relative to a smooth surface is found to be decreasing with increasing Reynolds number, down to 73 % (i.e. 27 % drag reduction) at $$Re_x\sim 8\times 10^6$$ , before starting to increase at higher speeds. For a given gas fraction, the trench width non-dimensionalized to the viscous length scale is found to govern the drag reduction, in agreement with previous numerical results.more » « less
An official website of the United States government
